Онлайн расчет температурного линейного расширения материалов, металлов, камней, пластиков

Содержание:

Методика расчёта объёма расширительного мембранного бака для системы отопления:

Представленный ниже расчет предназначен для индивидуальных систем отопления и значительно упрощен. Его точность составляет 10%. Мы считаем, что этого вполне достаточно

1. Определим, какой тип жидкости Вы будете использовать в виде теплоносителя. Для примера расчета в качестве теплоносителя мы возьмем воду. Коэффициент температурного расширения воды принят равным 0,034 (это соответствует температуре 85 o С)

2. Определим объем воды в системе. Приблизительно его можно рассчитать в зависимости от мощности котла из расчета 15 литров на каждый киловатт мощности . Например, при мощности котла 40 кВт, объем воды в системе будет равен 600 литрам

3. Определим величину максимального допустимого давления в системе отопления. Она задана порогом срабатывания клапана безопасности в системе отопления

4. Также в расчетах используется величина первоначального давления воздуха в расширительном баке Ро. Давление Ро не должно быть меньше , чем гиростатическое давление системы отопления в точке расположения расширительного бака

5. Полный объем расширения V можно подсчитать по формуле:

6. Выбирать бак нужно, округляя расчетный объем в большую сторону (бак большего объема не повредит)

7. Теперь подберем бак, обеспечивающий компенсацию этого объема. Учитывая, что коэффициент заполнения водой расширительного бака с фиксированной несменной мембранной при этих условиях равен 0,5 (таблица), то для рассмотренной системы подойдет 80-литровый расширительный бак:

80 литров x 0,5 = 40 литров

Коэффициент заполнения (полезный объём) расширительного мембранного бака

Предельное давление в системе Рmax, бар Первоначальное давление в баке , Ро бар
0,5 1,0 1,5 2,0 2,5 3,0 3,5 4,0
1 0,25
1,5 0,40 0,20
2,0 0,50 0,33 0,16
2,5 0,58 0,42 0,28 0,14
3,0 0,62 0,50 0,37 0,25 0,12
3,5 0,67 0,55 0,44 0,33 0,22
4,0 0,70 0,60 0,50 0,40 0,30 0,20
4,5 0,63 0,54 0,45 0,36 0,27 0,18
5,0 0,58 0,50 0,41 0,33 0,25 0,16
5,5 0,62 0,54 0,47 0,38 0,30 0,23
6,0 0,57 0,50 0,42 0,35 0,28

Расширение тел от нагревания

С давних времен человек научился пользоваться огнем: готовил пищу, отапливал помещения, расплавлял руду для получения металла.

Много позднее человек научился использовать теплоту для работы машин.

Нагревание придает телам некоторые новые свойства. Тела могут расширяться или сжиматься не только от растягивания и сдавливания, но также от нагревания или охлаждения. Наименьшее расширение замечается в телах твердых, наибольшее — в газах. Найдено, что при нагревании на 1° С каждый метр железа удлиняется на 0,012 мм, алюминия — на 0,024 мм. При нагревании на 1° С объем газа увеличивается на 1/273 объема, который газ имеет при 0°.

Как ни малы эти величины, однако они всегда учитываются в технике. Так, например, большие железнодорожные мосты закрепляют только с одного конца, а другой конец укладывают на катки. Посмотрите хотя бы на железнодорожные рельсы: всегда на месте соединения двух кусков оставляют промежуток.

Если рельсы поставить вплотную, то летом, в сильную жару, они удлинятся и могут лопнуть.

Благодаря одинаковому расширению железа и бетона стало возможным применять железобетонные постройки.

Устройство термометра также основано на тепловом расширении ртути или спирта.

Сделайте простую модель, наглядно показывающую влияние нагревания на металлы. Между двумя брусочками, жестко укрепленными на дощечке, натяните параллельно, на расстоянии 3 мм друг от друга, 2 медные или железные проволочки сечением в 0,2—0,3 мм (рис. 58). Из тонкой жести вырежьте стрелку длиною в 110—120 мм, которую устанавливайте горизонтально так, как показано на рисунке 58. Стоит только поднести спичку к проволочкам и прогреть их, как стрелка придет в движение, а при остывании вернется в первоначальное положение.

Сделайте из брусочков 2 стоечки на подставках. На верх стоек прибейте или приверните две металлические пластинки, края которых, обращенные друг к Другу, должны быть взаимно параллельны. Между пластинками надо сделать деревянную рейку. Расстояние между краями металлических пластинок должно быть таким, чтобы пятикопеечная монета туго, но проходила между ними (рис. 59).

Нагрейте монету и снова попробуйте ее пропустить между пластинками. У вас ничего не получится до тех пор, пока монета не остынет и не примет прежние размеры.

Еще проще можно проделать опыт при помощи двух гвоздей (рис. 59), забитых в дощечку. Расстояние между гвоздями должно равняться диаметру неразогретого пятачка.

Мембранные расширительные баки для систем отопления Wester

Общий вид фронт Общий вид сзади Вид сверху Вид снизу
Все объемы

Производитель: Wester Heating Емкость: 8, 12, 24, 35, 50, 80, 100, 120, 150, 200, 300, 500, 750, 1000, 1500, 2000, 2500, 3000, 5000, 10 000 литров Преддавление в воздушной полости: 1,5 бар Макс. давление: 5,0 бар Рабочая температура: -10°C. +100°C

– Предназначены для компенсации температурных расширений теплоносителя в замкнутых системах отопления. – Основные элементы бака – корпус из высококачественной стали, эластичная мембрана из каучука. – Давление в воздушной полости для баков от 8 до 150 литров – 1,5 бара, от 200 до 10 000 литров – бара. – Теплоноситель в системе отопления – вода с содержанием гликоля не выше 50%. – Расширительные баки комплектуются сменной мембраной. – Температурный режим работы – от -10 °С до +100 °С – Срок службы – 100 000 циклов. – Цвет корпуса – красный.

Жидкости расширяются значительно сильнее твердых тел. Они также расширяются во всех направлениях. Вследствие большой подвижности молекул жидкость принимает форму сосуда, в котором она находится, причем следует учитывать и тепловое расширение сосуда. Расширение жидкости в трубках также представляет собой объемное расширение. Следовательно, верны формулы объемного расширения.

V1 объем жидкости при температуре t1, метр 3
V2 объем жидкости при температуре t2, метр 3
ΔV изменение объема жидкости, метр 3
β коэффициент объемного расширения (объемный коэффициент теплового расширения), 1/K

Усадочно-температурные деформации бетона

Главная Пожары в зданиях и сооружениях Пределы огнестойкости конструкций Теплотехнический расчет огнестойкости Статический расчет огнестойкости Изготовление опытных образцов Методика испытаний Нагружение испытуемого образца Температурный режим Измерение деформаций Измерение прогибов образцов Испытания изгибаемых элементов на огнестойкость Замер продольных деформаций колонн Определение теплофизических свойств бетона Испытание призм-восьмерок на осевое растяжение Определение прочностных и деформативных свойств арматурной стали Прочность бетона на сжатие и растяжение Тяжелый бетон Керамзитобетон Высокопрочный бетон Упрогопластичсекие свойства бетона Усадочно-температурные деформации бетона Усадка бетона Теплофизические свойства бетона Взрывообразное разрушение бетона Механические свойства арматуры Упругопластические свойства арматуры Температурные деформации арматуры Сцепление арматуры с бетоном Усадочно-температурные деформации Потери предварительного напряжения в арматуре Железобетонные плиты из керамзитобетона Напряженно-деформированное состояние плит от неравномерного нагрева по высоте сечения Деформации продольной арматуры и бетона Огневое воздействие Теоретические деформации растянутой арматуры Огнестойкость железобетонных плит из керамзитобетона Предварительно напряженные балки и панели Напряженно-деформированное состояние железобетонного изгибаемого элемента Деформации продольной арматуры и сжатого бетона Прогиб изгибаемого предварительно напряженного железобетонного элемента Огнестойкость изгибаемых элементов Процесс обжатия Предварительно напряженные железобетонные балки при действии поперечной силы Напряженно-деформированное состояние Образование и раскрытие наклонных трещин в балках Деформации продольной арматуры в балке от нормативной нагрузки Прогибы балок Разрушение бетона сжатой зоны Разрушение балок при огневых испытаниях Определение предела огнестойкости от действия изгибающего момента Разрушение по наклонному сечению Образование и развитие наклонных трещин Прочность наклонного сечения предварительно напряженных балок Предварительно напряженные балки из керамзитоперлитобетона Полный прогиб балок Предел огнестойкости изгибаемых элементов Железобетонные колонны из керамзитобетона Железобетонные колонны из высокопрочного бетона Уменьшение уровня предварительного нагружения Средний предел огнестойкости колонн из высокопрочного бетона Расчет железобетонных колонн из высокопрочного бетона Железобетонные колонны из тяжелого бетона под большую нагрузку и их стыки Криволинейное распределение температуры бетона Минимальные пределы огнестойкости для колонн в зданиях степени Остаточная несущая способность железобетонных колонн после пожара Поведение железобетонных конструкций в зданиях при пожаре Совместная работа железобетонных элементов в зданиях Стыки и швы между сборными элементами Железобетонные рамные конструкции

1.7. Температурные деформации в статически неопределимых конструкциях

Статически неопределимыми конструкциями называются конструкции, у которых число реакций превышает число уравнений статического равновесия

В отличие от статически определимых конструкций при расчете таких конструкций принимаются во внимание прогибы

В статически неопределимой конструкции температурные напряжения могут возникать или не возникать в зависимости от особенностей конструкции и особенностей температурных изменений. Чтобы проиллюстрировать некоторые из таких возможностей, рассмотрим статически неопределимую ферму, показанную на рисунке 2.4.

Рисунок 2.4 — Статически неопределимая ферма под воздействием изменений температуры

Опоры этой конструкции позволяют узлу D двигаться горизонтально. Поэтому, когда вся ферма однородно нагревается, в ней не возникает температурных напряжений. Все элементы увеличиваются в длине пропорционально своим первоначальным длинам, а вся ферма в целом становится немного больше в размерах.

Однако, если некоторые из стержней нагреваются, а другие – нет, то возникают температурные напряжения, так как статически неопределимое расположение стержней препятствует их свободному расширению.

Отрицательный коэффициент теплового расширения

Основная статья: Negative thermal expansion

Некоторые материалы при повышении температуры демонстрируют не расширение, а наоборот, сжатие, т. е. имеют отрицательный коэффициент теплового расширения. Для некоторых веществ это проявляется на довольно узком температурном интервале, как, например, у воды на интервале температур 0…+3,984 °С, для других веществ и материалов, например фторид скандия(III), вольфрамат циркония (ZrW2O8), некоторых углепластиков интервал весьма широк. Подобное поведение демонстрирует также обычная резина. При сверхнизких температурах аналогичным образом ведут себя кварц, кремний и ряд других материалов. Также существуют (ферро-никелевые), имеющие в некотором диапазоне температур коэффициент теплового расширения, близкий к нулю.

Коэффициент линейного теплового (температурного) расширения для некоторых распространенных материалов, таких как: алюминий, медь, стекло, железо и многое другое. Вариант для печати.

Коэффициент линейного теплового (температурного) расширения для некоторых распространенных материалов, таких как: алюминий, медь, стекло, железо и многое другое.
Материал Коэффициент линейного теплового расширения
(10-6 м/(мK)) / ( 10-6 м/(мoС)) (10-6 дюйм/(дюйм oF))
ABS (акрилонитрил-бутадиен-стирол) термопласт 73.8 41
ABS — стекло, армированное волокнами 30.4 17
Акриловый материал, прессованный 234 130
Алмаз 1.1 0.6
Алмаз технический 1.2 0.67
Алюминий 22.2 12.3
Ацеталь 106.5 59.2
Ацеталь , армированный стекловолокном 39.4 22
Ацетат целлюлозы (CA) 130 72.2
Ацетат бутират целлюлозы (CAB) 25.2 14
Барий 20.6 11.4
Бериллий 11.5 6.4
Бериллиево-медный сплав (Cu 75, Be 25) 16.7 9.3
Бетон 14.5 8.0
Бетонные структуры 9.8 5.5
Бронза 18.0 10.0
Ванадий 8 4.5
Висмут 13 7.3
Вольфрам 4.3 2.4
Гадолиний 9 5
Гафний 5.9 3.3
Германий 6.1 3.4
Гольмий 11.2 6.2
Гранит 7.9 4.4
Графит, чистый 7.9 4.4
Диспрозий 9.9 5.5
Древесина, пихта, ель 3.7 2.1
Древесина дуба, параллельно волокнам 4.9 2.7
Древесина дуба , перпендикулярно волокнам 5.4 3.0
Древесина, сосна 5 2.8
Европий 35 19.4
Железо, чистое 12.0 6.7
Железо, литое 10.4 5.9
Железо, кованое 11.3 6.3
Материал Коэффициент линейного теплового расширения
(10-6 м/(мK)) / ( 10-6 м/(мoС)) (10-6 дюйм/(дюйм oF))
Золото 14.2 8.2
Известняк 8 4.4
Инвар (сплав железа с никелем) 1.5 0.8
Инконель (сплав) 12.6 7.0
Иридий 6.4 3.6
Иттербий 26.3 14.6
Иттрий 10.6 5.9
Кадмий 30 16.8
Калий 83 46.1 — 46.4
Кальций 22.3 12.4
Каменная кладка 4.7 — 9.0 2.6 — 5.0
Каучук, твердый 77 42.8
Кварц 0.77 — 1.4 0.43 — 0.79
Керамическая плитка (черепица) 5.9 3.3
Кирпич 5.5 3.1
Кобальт 12 6.7
Констанан (сплав) 18.8 10.4
Корунд, спеченный 6.5 3.6
Кремний 5.1 2.8
Лантан 12.1 6.7
Латунь 18.7 10.4
Лед 51 28.3
Литий 46 25.6
Литая стальная решетка 10.8 6.0
Лютеций 9.9 5.5
Литой лист из акрилового пластика 81 45
Материал Коэффициент линейного теплового расширения
(10-6 м/(мK)) / ( 10-6 м/(мoС)) (10-6 дюйм/(дюйм oF))
Магний 25 14
Марганец 22 12.3
Медноникелевый сплав 30% 16.2 9
Медь 16.6 9.3
Молибден 5 2.8
Монель-металл (никелево-медный сплав) 13.5 7.5
Мрамор 5.5 — 14.1 3.1 — 7.9
Мыльный камень (стеатит) 8.5 4.7
Мышьяк 4.7 2.6
Натрий 70 39.1
Нейлон, универсальный 72 40
Нейлон, Тип 11 (Type 11) 100 55.6
Нейлон, Тип 12 (Type 12) 80.5 44.7
Нейлон литой , Тип 6 (Type 6) 85 47.2
Нейлон, Тип 6/6 (Type 6/6), формовочный состав 80 44.4
Неодим 9.6 5.3
Никель 13.0 7.2
Ниобий (Columbium) 7 3.9
Нитрат целлюлозы (CN) 100 55.6
Окись алюминия 5.4 3.0
Олово 23.4 13.0
Осмий 5 2.8
Материал Коэффициент линейного теплового расширения
(10-6 м/(мK)) / ( 10-6 м/(мoС)) (10-6 дюйм/(дюйм oF))
Палладий 11.8 6.6
Песчаник 11.6 6.5
Платина 9.0 5.0
Плутоний 54 30.2
Полиалломер 91.5 50.8
Полиамид (PA) 110 61.1
Поливинилхлорид (PVC) 50.4 28
Поливинилденфторид (PVDF) 127.8 71
Поликарбонат (PC) 70.2 39
Поликарбонат — армированный стекловолокном 21.5 12
Полипропилен — армированный стекловолокном 32 18
Полистирол (PS) 70 38.9
Полисульфон (PSO) 55.8 31
Полиуретан (PUR), жесткий 57.6 32
Полифенилен — армированный стекловолокном 35.8 20
Полифенилен (PP), ненасыщенный 90.5 50.3
Полиэстер 123.5 69
Полиэстер, армированный стекловолокном 25 14
Полиэтилен (PE) 200 111
Полиэтилен — терефталий (PET) 59.4 33
Празеодимий 6.7 3.7
Припой 50 — 50 24.0 13.4
Прометий 11 6.1
Рений 6.7 3.7
Родий 8 4.5
Рутений 9.1 5.1
Материал Коэффициент линейного теплового расширения
(10-6 м/(мK)) / ( 10-6 м/(мoС)) (10-6 дюйм/(дюйм oF))
Самарий 12.7 7.1
Свинец 28.0 15.1
Свинцово-оловянный сплав 11.6 6.5
Селен 3.8 2.1
Серебро 19.5 10.7
Скандий 10.2 5.7
Слюда 3 1.7
Сплав твердый (Hard alloy) K20 6 3.3
Сплав хастелой (Hastelloy) C 11.3 6.3
Сталь 13.0 7.3
Сталь нержавеющая аустенитная (304) 17.3 9.6
Сталь нержавеющая аустенитная (310) 14.4 8.0
Сталь нержавеющая аустенитная (316) 16.0 8.9
Сталь нержавеющая ферритная (410) 9.9 5.5
Стекло витринное (зеркальное, листовое) 9.0 5.0
Стекло пирекс, пирекс 4.0 2.2
Стекло тугоплавкое 5.9 3.3
Строительный (известковый) раствор 7.3 — 13.5 4.1-7.5
Стронций 22.5 12.5
Сурьма 10.4 5.8
Таллий 29.9 16.6
Тантал 6.5 3.6
Теллур 36.9 20.5
Тербий 10.3 5.7
Титан 8.6 4.8
Торий 12 6.7
Тулий 13.3 7.4
Материал Коэффициент линейного теплового расширения
(10-6 м/(мK)) / ( 10-6 м/(мoС)) (10-6 дюйм/(дюйм oF))
Уран 13.9 7.7
Фарфор 3.6-4.5 2.0-2.5
Фенольно-альдегидный полимер без добавок 80 44.4
Фторэтилен пропилен (FEP) 135 75
Хлорированный поливинилхлорид (CPVC) 66.6 37
Хром 6.2 3.4
Цемент 10.0 6.0
Церий 5.2 2.9
Цинк 29.7 16.5
Цирконий 5.7 3.2
Шифер 10.4 5.8
Штукатурка 16.4 9.2
Эбонит 76.6 42.8
Эпоксидная смола , литая резина и незаполненные продукты из них 55 31
Эрбий 12.2 6.8
Этилен винилацетат (EVA) 180 100
Этилен и этилакрилат (EEA) 205 113.9

Эфир виниловый

16 — 22 8.7 — 12
  • T(oC) = 5/9
  • 1 дюйм = 25.4 мм
  • 1 фут = 0.3048 м

Теплоемкость бетона Коэффициент расширения бетона

При строительстве домов с использованием бетона, всегда производятся расчеты, так вот для этого обязательно нужно знать удельную теплоемкость бетона. Удельная теплоемкость или просто теплоемкость бетона, очень важна и без нее не обойтись, в строительстве, когда например рассчитывается теплопроводность конструкции, для того что определить расходы на ускорение твердения строения из бетона.

Теплоемкость бетона — это количество тепла, которое нужно передать бетону, для того что бы его температура изменилась, на одну единицу.

Связанные статьи: Преимущества пенобетона

Коэффициент расширения бетона

Меняющийся размер бетона, из за влияния температуры, обозначается коэффициентом расширения бетона. Размер этого коэффициента расширения бетона равен 0.00001 (ºС)-1, а это означает, что если температура изменится на 80 ºС, то расширение будет около 0.8 мм/м. Получается, что для любой бетонной постройки требуются температурные швы.

Температурно усадочные швы

Температурно усадочные швы, в России должны быть начиная от 1.1 мм на 1м, делая вывод из расчета 0.3 мм — это усадка + 0.8 — температурный коэффициент. В строительных нормах и правилах (СНИП), размеры больше, так же стоит учитывать и то, что изменения температур порядка 80 ºС и больше, вызывают трещины в бетоне, который имеет жесткий наполнитель внутри, потому что существует разница коэффициентов расширения раствора и внутреннего наполнителя.

Связанные статьи:

  • Дома из пенобетонных блоков
  • Сколько цемента в кубе бетона

Теплоемкости бетонов

Теплопроводность монолитных бетонов при условии что он воздушно-сухой составляет порядка 1.35 Bт/(m*ºC) = 1.5 ккал/(ч*м*ºС). Высокие характеристики теплопроводности такого тяжелого бетона, заставляют обязательно использовать утепление наружных стен из монолитного бетона.

Теплопроводность пористого бетона и его разновидностей — составляет порядка 0.35 — 0.75 Bт/(m*ºC)= 0.3-0.6 ккал/(ч*m*ºC), учитывайте, что прочность таких бетонов значительно ниже.

Удельная теплоемкость тяжелых и пористых бетонов (сухих) — около 1кДж/(кг*ºС) = 0.2 ккал/(кг*ºC)

Объемная теплоемкость тяжелых бетонов — около 2.5 кДж/(м3*К), пористых же зависит и изменятся от их плотности.

Смотрите так же: Керамзитобетон состав и пропорции

Удельная теплоемкость бетонной смеси (жидкой)- около 1.5 кДж/(кг*ºC) = 0.3 kkal/(kg*ºC), не забывайте, что такая смесь легче, чем тяжелый бетон и тяжелее чем пористый.

  1. Значит, теплоемкость бетона чаще всего от 0.17 и до 0.22 ккал/кг. Как и теплоемкость у многих каменных материалов.
  2. Становится понятно, почему дерево теплое, а бетон холодный, все из за низкой теплоемкости бетона. Теплопроводность дерева 0.6-0.7, что почти в 3 раза больше.
  3. Коэффициент расширения бетона — показывает изменение бетона. Для бетона он равняется 10*10^-6. Почти как и у коэффициента расширения стали (в зависимости от марки они так же изменяются), в связи с чем железобетонные конструкции очень распространены.

betonobeton.ru

Измерение

В качестве приборов для количественного измерения коэффициентов теплового расширения тел в любом фазовом состоянии применяется аппарат под названием дилатометр, который существует в большом количестве исполнений. Суть работы почти всех дилатометров в измерении малых и сверхмалых сдвигов, причиной которых служит изменение размеров тела относительно шкалы дилатометра. Исходя из этого для определения коэффициентов расширения подходят самые разнообразные методики измерения микроскопических смещений.
При этом у жидкостей и газов определяется лишь объёмное температурное расширение, понятия линейного теплового расширения для таких тел нет.
Известны дилатометры следующих типов:
— оптико-механические,
— ёмкостного типа,
— индукционного типа,
— интерференционные,
— рентгеновские,
— радиорезонансные и прочие.
Среди самых распространённых видов дилатометров находится тепловой дилатометр. Он предназначен для определения и линейного, и объемного термического расширения тела.

Коэффициент линейного теплового расширения для некоторых распространенных материалов, таких как: алюминий, медь, стекло, железо и многое другое.

Коэффициент линейного теплового расширения для некоторых распространенных материалов, таких как: алюминий, медь, стекло, железо и многое другое.
Материал Коэффициент линейного теплового расширения
(10-6 м/(мK)) / ( 10-6 м/(мoС)) (10-6 дюйм/(дюйм oF))
ABS (акрилонитрил-бутадиен-стирол) термопласт 73.8 41
ABS — стекло, армированное волокнами 30.4 17
Акриловый материал, прессованный 234 130
Алмаз 1.1 0.6
Алмаз технический 1.2 0.67
Алюминий 22.2 12.3
Ацеталь 106.5 59.2
Ацеталь , армированный стекловолокном 39.4 22
Ацетат целлюлозы (CA) 130 72.2
Ацетат бутират целлюлозы (CAB) 25.2 14
Барий 20.6 11.4
Бериллий 11.5 6.4
Бериллиево-медный сплав (Cu 75, Be 25) 16.7 9.3
Бетон 14.5 8.0
Бетонные структуры 9.8 5.5
Бронза 18.0 10.0
Ванадий 8 4.5
Висмут 13 7.3
Вольфрам 4.3 2.4
Гадолиний 9 5
Гафний 5.9 3.3
Германий 6.1 3.4
Гольмий 11.2 6.2
Гранит 7.9 4.4
Графит, чистый 7.9 4.4
Диспрозий 9.9 5.5
Древесина, пихта, ель 3.7 2.1
Древесина дуба, параллельно волокнам 4.9 2.7
Древесина дуба , перпендикулярно волокнам 5.4 3.0
Древесина, сосна 5 2.8
Европий 35 19.4
Железо, чистое 12.0 6.7
Железо, литое 10.4 5.9
Железо, кованое 11.3 6.3
Золото 14.2 8.2
Известняк 8 4.4
Инвар (сплав железа с никелем) 1.5 0.8
Инконель (сплав) 12.6 7.0
Иридий 6.4 3.6
Иттербий 26.3 14.6
Иттрий 10.6 5.9
Кадмий 30 16.8
Калий 83 46.1 — 46.4
Кальций 22.3 12.4
Каменная кладка 4.7 — 9.0 2.6 — 5.0
Каучук, твердый 77 42.8
Кварц 0.77 — 1.4 0.43 — 0.79
Керамическая плитка (черепица) 5.9 3.3
Кирпич 5.5 3.1
Кобальт 12 6.7
Констанан (сплав) 18.8 10.4
Корунд, спеченный 6.5 3.6
Кремний 5.1 2.8
Лантан 12.1 6.7
Латунь 18.7 10.4
Лед 51 28.3
Литий 46 25.6
Литая стальная решетка 10.8 6.0
Лютеций 9.9 5.5
Литой лист из акрилового пластика 81 45
Магний 25 14
Марганец 22 12.3
Медноникелевый сплав 30% 16.2 9
Медь 16.6 9.3
Молибден 5 2.8
Монель-металл (никелево-медный сплав) 13.5 7.5
Мрамор 5.5 — 14.1 3.1 — 7.9
Мыльный камень (стеатит) 8.5 4.7
Мышьяк 4.7 2.6
Натрий 70 39.1
Нейлон, универсальный 72 40
Нейлон, Тип 11 (Type 11) 100 55.6
Нейлон, Тип 12 (Type 12) 80.5 44.7
Нейлон литой , Тип 6 (Type 6) 85 47.2
Нейлон, Тип 6/6 (Type 6/6), формовочный состав 80 44.4
Неодим 9.6 5.3
Никель 13.0 7.2
Ниобий (Columbium) 7 3.9
Нитрат целлюлозы (CN) 100 55.6
Окись алюминия 5.4 3.0
Олово 23.4 13.0
Осмий 5 2.8
Палладий 11.8 6.6
Песчаник 11.6 6.5
Платина 9.0 5.0
Плутоний 54 30.2
Полиалломер 91.5 50.8
Полиамид (PA) 110 61.1
Поливинилхлорид (PVC) 50.4 28
Поливинилденфторид (PVDF) 127.8 71
Поликарбонат (PC) 70.2 39
Поликарбонат — армированный стекловолокном 21.5 12
Полипропилен — армированный стекловолокном 32 18
Полистирол (PS) 70 38.9
Полисульфон (PSO) 55.8 31
Полиуретан (PUR), жесткий 57.6 32
Полифенилен — армированный стекловолокном 35.8 20
Полифенилен (PP), ненасыщенный 90.5 50.3
Полиэстер 123.5 69
Полиэстер, армированный стекловолокном 25 14
Полиэтилен (PE) 200 111
Полиэтилен — терефталий (PET) 59.4 33
Празеодимий 6.7 3.7
Припой 50 — 50 24.0 13.4
Прометий 11 6.1
Рений 6.7 3.7
Родий 8 4.5
Рутений 9.1 5.1
Самарий 12.7 7.1
Свинец 28.0 15.1
Свинцово-оловянный сплав 11.6 6.5
Селен 3.8 2.1
Серебро 19.5 10.7
Скандий 10.2 5.7
Слюда 3 1.7
Сплав твердый (Hard alloy) K20 6 3.3
Сплав хастелой (Hastelloy) C 11.3 6.3
Сталь 13.0 7.3
Сталь нержавеющая аустенитная (304) 17.3 9.6
Сталь нержавеющая аустенитная (310) 14.4 8.0
Сталь нержавеющая аустенитная (316) 16.0 8.9
Сталь нержавеющая ферритная (410) 9.9 5.5
Стекло витринное (зеркальное, листовое) 9.0 5.0
Стекло пирекс, пирекс 4.0 2.2
Стекло тугоплавкое 5.9 3.3
Строительный (известковый) раствор 7.3 — 13.5 4.1-7.5
Стронций 22.5 12.5
Сурьма 10.4 5.8
Таллий 29.9 16.6
Тантал 6.5 3.6
Теллур 36.9 20.5
Тербий 10.3 5.7
Титан 8.6 4.8
Торий 12 6.7
Тулий 13.3 7.4
Уран 13.9 7.7
Фарфор 3.6-4.5 2.0-2.5
Фенольно-альдегидный полимер без добавок 80 44.4
Фторэтилен пропилен (FEP) 135 75
Хлорированный поливинилхлорид (CPVC) 66.6 37
Хром 6.2 3.4
Цемент 10.0 6.0
Церий 5.2 2.9
Цинк 29.7 16.5
Цирконий 5.7 3.2
Шифер 10.4 5.8
Штукатурка 16.4 9.2
Эбонит 76.6 42.8
Эпоксидная смола , литая резина и незаполненные продукты из них 55 31
Эрбий 12.2 6.8
Этилен винилацетат (EVA) 180 100
Этилен и этилакрилат (EEA) 205 113.9

Эфир виниловый

16 — 22 8.7 — 12
  • T(oC) = 5/9
  • 1 дюйм = 25.4 мм
  • 1 фут = 0.3048 м
Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector